本类热点
当前位置: 首页 >> 师资队伍 >> 教授 >> 新闻内容
王 克
[ 作者:范德军 来源:哈工大(威海)理学院 浏览:13293 录入时间:2009年9月22日 ]




姓名 王克 性别 男

出生日期 1948.8.31 职称 博导、教授

所在学院 理学院数学系

学科: 应用数学

研究方向:常微分方程,随机微分方程,定性理论,生物数学

通讯地址:威海市文化西路2号,哈工大(威海)

电话:06315687660
E_mail wangke@hitwh.edu.cn


个人简历:

王克,1948年8月生,男,博士,教授,博导。1984年毕业于东

北师范大学数学系获理学硕士学位,1996年毕业于吉林大学基础
数学专业,获理学博士学位,1991年被评为教授,1997年评为博
士生导师。曾任中国工业与应用数学学会理事,中国生物数学学
会常务理事,“生物数学学报”编委,“东北数学”编委,

“Annals of Differential Equations”编委,从1992年起享受
国务院政府津贴。曾先后参加8项分别由中国科学院、国家教

委、国家自然科学基金委资助的重要科研项目的研究工作,并都
顺利完成项目所预定的任务。发表学术论文250多篇。主要研究

方向为常微分方程与泛函微分方程定性理论、随机微分方程的理
论及应用、生物数学等。


奖励情况

教育部高等学校科学研究优秀成果奖二等奖

范猛,王克,李文学,刘蒙

非线性动力学系统动态平衡规律研究,2012-11-30



2011年山东省高校优秀科研成果奖

三等奖 排序一



国家教委科技进步二等奖

常微分方程及泛函微分方程周期解、稳定性及振动解研究

黄启昌,王克,陈秀东,魏俊杰数学与统计学院国家教委部级奖 1986-01-01



国家教委科技进步三等奖

泛函微分方程分支与周期解研究黄启昌,王克,魏俊杰,潘家齐数学与统计学院国家教委部级奖 1991-07-01


吉林省教委科技进步奖(甲类)二等奖

泛函微分方程解的渐近性,稳定性,振动性,极限集黄启昌,王克,魏俊杰,潘家齐数学与统计学院吉林省教委省级奖 1991-12-01


国家教委科技进步三等奖

泛函微分方程与常微分方程解的性态分枝及边值问题研究

黄启昌,王克,史希福,潘家齐,魏俊杰数学与统计学院国家教委部级奖 1996-08-01



2003.9 被评为吉林省教育系统师德先进个人。



2002.1.23被评为第二批吉林省优秀省管专家.



98.12.3获宝钢优秀教学奖.



基金:


资助号11171081 项目名称随机生物种群模型若干性质的研究
资助金额 35万, 国家自然科学基金面上项目 2012-1-1 2015-12-31 .


资助号11171056 项目名称混合随机系统动力学行为
资助金额 35万, 国家自然科学基金面上项目 2012-1-1 2015-12-31 .


Lienard系统的拓扑分类李晓月,王克,蒋达清,张晓颖,孙雪楠,刘振文数学与统计学院国家自然科学基金委员会资助金额18 万 B级 2008-01—2010-12 纵向


常微分方程的伪概周期性及应用范猛,王克,张入元,柏灵,王静数学与统计学院国家自然科学基金委员会资助金额10.5 万 B级 2003-01—2005-12 纵向


微分方程的伪概周解理论及其应用范猛,王克,叶丹,张伟鹏数学与统计学院吉林省科技厅资助金额10 万 B级


微分方程、差分方程的周期解与概周期解理论及应用王克,范猛,王茜,李鹤,熊友兵数学与统计学院教育部资助金额7 万C级


可积系统的时滞扰动理论王克,黄启昌,潘家齐,蒋达清,范猛数学与统计学院国家自然科学基金委员会资助金额15.5万B级


时滞微分方程所确定的动力系统的研究王克,黄启昌,潘家齐,蒋达清,范猛数学与统计学院国家自然科学基金委员会资助金额10 万 B级 1999-01—2001-12 纵向


泛函微分方程及支问题黄启昌,王克,魏俊杰,潘家齐数学与统计学院国家自然科学基金委员会资助金额24 万 A4 1994-01—1998-09 纵向


具无限时滞的非自治生态系统的持久性研究王克,黄启昌,王德利数学与统计学院国家自然科学基金委员会资助金额2万D级 1994-01—1996-12 纵向


泛函微分方程解的分枝及渐近性态研究黄启昌,王克,魏俊杰,潘家齐数学与统计学院国家自然科学基金委员会资助金额1 万无 1991-06—1993-12 纵向


积分常微分方程及积分偏微分方程的定性研究王克数学与统计学院校内自然科学青年基金资助金额0.04 万无 1989-01—1991-12 纵向  


无限滞泛函微分方程解的极限集分枝及混沌现象黄启昌,史希福,许凤,王克,潘家齐,张波,何敏,魏俊杰数学与统计学院国家自然科学基金委员会资助金额0.9万E级 1988-01—1990-12 纵向


具无限时滞的泛函微分方程及VOLTERRA积分微分方程理论黄启昌,王克,魏俊杰,张波,何敏,李晓疑数学与统计学院国家自然科学基金委员会资助金额0.45万 E级 1986-01—1988-12 纵向




出版专著情况

现代数学基础丛书 128:

王克,范猛.泛函微分方程的相空间理论及应用.科学出版
社,2009.

生物数学丛书7:

王克.随机生物数学模型.科学出版社.2010.

已毕业博士(哈工大):

李文学 吕敬亮 胡贵新 刘蒙

在读博士:

邱宏 邹晓玲 张春梅 张向华 张新红 吴瑞华


王克部分论文目录


[1] 王克,Filippov 定理的改进, 科学通报(简讯), 12(1983).

[2] 王克,黄启昌,h 有界与具无限时滞的泛函微分方程的周期解, 科学通报, 15 (1986).

[3] 王克,LaSalle 定理的推广, 应用数学学报, 3(1986). MR 87m:34068.

[4] 王克,黄启昌, 空间与具无穷时滞的泛函微分方程解的有界性及周期解, 中国科学, A辑, 3(1987), MR 88m:34066.

[5] 无穷时滞泛函分方程周期解的存在性, 数学年刊, 8A(4)
1987. MR 89a:34082.

[6] 何敏,黄启昌,王克,Phase Spaces , ,and g-Uniform Boundedness f FDE(ID), J.of Mathematical Analysis and Applications, Vol. 138, No.2 (1989). 影响因子:1.046

[7] Wang Ke, On the Existence of Limit Cycles of the Equation x’=h(y)-F(x), y’=-g(x), Kodai Math. J. Vol. 12, No. 1, (1989). MR 90d:34060.

[8] 王克,关于泛函微分方程周期解的存在性, 数学年刊, 10, (A3),
1989. MR 90j:34103.

[9] 王克,一类非线性振动方程的小摄动, 应用数学学报, 12, 3(1989).

[10] Wang Ke, On the Existence and Uniqueness of Periodic Solutions of Volterra Integral Differential Equations, Systems Science and Mathematical Sciences, Vol. 3, No. 1, 1990.

[11] Wang, Ke, The Existence of Limit Cycles of Nonlinear Oscillation Equations, Tohoku Math. J. 42 (1990), No. 1.

[12] 王克,Poincaer-Bendixson 环域定理的推广, 应用数学学报, Vol. 13, No. 4, 1990, 401-408. MR 92j:34063.

[13] Wang Ke, Local theory for retarded equations with infinite delay, Applicable Analysis, 35 (1990), 1-4.

[14] Wang, Ke, Unique Existence of Periodic Solutions of Neutral Volterra Integrodifferential Equations, 应用数学学报, (英文版), Vol. 6, No.3, 1990, 238-244. MR 91m:34107.

[15] 王克,Massera 定理的拓广, 数学物理学报, 10 (1990), 2, 197-199. MR 91h:34011.

[16] Wang, Ke, On the unique existence of periodic solutions of neutral Volterra integro-differential equations, Periodica Mathematica Hungarica Vol. 21(1), 1990, 21-29. MR 91e:45017.

[17] Wang Ke, On the Existence of Nontrivial Periodic Solutions of Differential Difference Equations, 数学年刊, 11B (4) 1990. 438-44. MR 91k:34113.

[18] Wang Ke, On the Equation x’(t)=f(x(x(t))), Funkcialaj Ekvacilj. 33(1990), 405-426. MR 91k:34114.

[19] Wang Ke, Quasi Periodic Solutions of Neutral Volterra Integral Differential Equations with Infinite Delay, 数学年刊, 12B: (1991), 157-163, MR 92g:45012.

[20] 王克,一类三维微分差分方程非平凡周期解的存在性, 数学学报, 6, 1992.

[21] Wang Ke, On the Unique Existence of Almost Periodic Solutions of Volterra Integral Differential Equations, Acta. Math. Hungarica, 58 (3-4), 1991, 311-318.

[22] Wang Ke, Necessary and Sufficient Condition for the Unique Existence of Periodic Solution of Linear Volterra Equations, 数学学报(英文版), 1993, Vol. 9, No. 2.

[23] 王克,一类泛函微分方程的稳定性定理及其应用, 系统科学与数学, 12 (3), 1992.

[24] 王克,多物种生态系统的周期正解, 应用数学学报, 第17卷, 第1期, 1994.

[25] 王克,具无限时滞和无界时滞的卷积型Volterra 方程稳定性的等价性, 数学物理学报, 12 (1992), 增刊, 80-82.

[26] 王克,g-稳定和 -稳定的等价性, 系统科学与数学, (13) 2, 1993.

[27] 王克,Lienard 方程零解的全局渐近稳定性, 科学通报, 38卷 7期, 1993.

[28] 王克,一类具偏差变元的微分方程的周期解, 数学学报, 37卷, 3期, 1994年.

[29] 王克,泛函微分方程的全局稳定周期解, 数学学报, 37卷, 4期, 1994年.

[30] 王克, 强迫Lienard 方程的概周期解, 数学年刊, 16A: 4 (1995).(英文全文发表于 CHINESE JOURNAL OF CONTEMPORARY MATHEMATICS, VOL. 16 NO.3 1995).

[31] 王克,一类具复杂偏差变元的泛函微分方程, 系统科学与数学, 第16卷, 第七期, 1996.

[32]王克,具无限时滞的非自治捕食者—食饵系统的持久性,数学学报,Vol. 40, No.3, 1997, 321-332.

[33] 迪申加卜,王克,无限时滞泛函微分方程解的稳定性与有界性,数学学报,Vol.40, No.4, 1997, 511-520.


[34]Wang Ke, Persistence of Nonautonomous Competitive Systems with Infinite Delay, Acta Mathematicae Applecatae Since (应用数学学报, 英文版), Vol. 14 No.3, 1998, 333-336.

[35] 范猛,王克,具有限时滞中立型泛函微分方程周期解, 科学通报, 第43卷, 第23期, 1998, 2498-2502.

[36] 范猛,王克,Optimal harvesting policy for single population with periodic coefficients, Mathematical Biosciences 152 (1998) 165-
177. (1998年SCI 检索 )

[37] 范猛, 王克,蒋达青, Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments, Mathematical Biosiences 160(1999), 47-61. (1999年SCI 检索收录)


[38] 范猛,王克,一致最终有界性与无限时滞泛函微分方程周期解,系统科学与数学, 1999年, 3期, 323-328。

[39] 范猛, 王克, 多物种生态竞争系统周期正解的存在性和全局吸引性,数学学报, 2000年, 1期, 77-82.

[40] 王克,范猛,Positive Periodic Solutions of Predator-Prey Systems with Infinite Delay, Chin. Ann. Of Math. ( 数学年刊(英)) 21B: 1(2000), 43-54. (2000年SCI检索收录)

[41] 范猛,王克,Periodic Solutions of Convex Neutral Functional differential Equations, Tohoku Math. J. 52(2000), 47-59. (2000年SCI检索收录)

[42] 范猛,王克, 具无限时滞线性中立型泛函微分方程周期解,数学学报, 2000年4期, 695-702.

[43] 范猛, 王克,Global Periodic Solutions of a Generalized n-Species Gilpin-Ayala Competition Model, Computers & Mathematics with Applications 40 (2000) 1141-1151. (2000年SCI检索收录, 2000年EI检索收录). 0.997

[44] 范猛, 王克,具有偏差变元的捕食者-食饵系统全局周期解的存在性, 应用数学学报, 2000年, 4期, 557-561.

[45] 黄启昌,李毅,李宪高,王克,On the Conditions for the Orbitally Asymptotical Stability of the Almost Periodic Orbits of Dynamical Systems,数学进展,2000年6期,563-565。

[46] 范猛,王克,李明玉, Global stability of SEIR models with saturation incidence, PROCEEDINGS OF INTER CONFER ON DIFFER EQUATIONS AND COMPUTE SIMULATIONS (VOL:0NO:0:71), 2000-04-01.(SCI收录)

[47] 范猛,王克,Positive Periodic Solutions of a Periodic Integro-differential Competition System with Infinite Delays, ZAMM. Z. Angew. Math. Mech. 81(2001) 3, 197-203. (2001年SCI检索收录)。影响因子:0.55


[48] 范猛, 王克, Study on harvested population with diffusional migration, Journal of Systems Science and Complexity, Vol. 14 No.2, 2001, 139-148.

[49] Fan Meng ,Li Michael Y, Wang Ke, Global stability of an SEIS epidemic model with recruitment and a varying total population size, Math Biosci., 2001, 170, 199-208. (2001 年SCI 检索收录)

[50] Fan Meng and Wang Ke, Periodicity in a Delayed Ratio-Dependent Pedator-Prey System, Journal of Mathematical Analysis and Applications 262, 179-190 (2001). (SCI检索)

[51] Fan Meng and Wang Ke, Global Existence of Positive Periodic Solutions of Periodic Predator-Prey System with Infinite Delay, Journal of Mathematical Analysis and Applications 262, 1-11 (2001). (SCI检索)

[52] 范猛,王克,一类具有Holling II 型功能性反应的捕食者-食饵系统全局周期解的存在性,数学物理学报,2001,21A(4),492-497。

[53] Meng Fan and Ke Wang, Periodicity in a “Food-limited” Population Model with Toxicants and Time Delays, Acta Mathematicae Applicatae Sinica, English Series, Vol. 18, No.2 (2002) 309-314.

[54] Meng Fan and Ke Wang, Periodic Solutions of a Discrete Time Nonautonomous Ratio-Dependent Predator-Pray System, Mathematical and Computer Modelling 35 (2002), 951-961. Impact Factor: 1.032 (SCI检索)

[55] Bai Ling, Wang Ke, Almost periodic solution of a non-autonomous food chains system with Holling's type II functional response. Soochow J. Math. 28 (2002), no. 3, 267--279.

[56] Zhao Changjian, Wang Ke, On the existence of positive periodic solutions of a delay logistic equation. Bull. Polish Acad. Sci. Math. 50 (2002), no. 2, 155--160.

[57] Zhang Xiaoying, Bai Ling, Fan Meng, Wang Ke, Existence of positive periodic solution for predator-prey difference system with Holling III functional response. Math. Appl. 15 (2002), no. 3, 25--31.

[58] Meng Fan, Ke Wang. Periodicity in a "food-limited" population model with oxicants and time delays, Acta Mathematicae Applicatae Sinica, English Series, 2002, 18(2):309-314.

[59] Meng Fan, Jiabu Disen, Qian Wang, Ke Wang. Stability and boundedness of solutions of neutral functional differential equations, Journal of Mathematics Analysis and Applications, 2002, 276(2):545-560. (SCI收录)

[60]Xiaoying Zhang, Zhisheng Shuai, Ke Wang, Optimal impulsive harvesting policy for single population, Nonlinear Analysis: Real World Applications 4(2003), 639-651.(SCI检索)

[61] Changjian Chao, L. Debnach, Ke Wang, Positive Periodic Solutions of a Delayed Model in Population, Applied Mathematics Letters 16 (2003) 561-565. Impact Factor: 0.948 (SCI检索)


[62] 范猛,王克, Yoshizawa型周期解定理和Massera型周期解定理研究进展简介, 数学进展, Vol.32, No.3, 2003, 295-302.

[63] Meng Fan, Ke Wang, Patricia J. and Ravi P., Periodicity and Stability in Periodic n-Species Lotka-Volterra Competition System with Feedback Controls and Deviating Arguments, Acta Mathematica Sinica, English Series, 2003, Vol. 19, No.4, 801-822. (SCI检索)

[64] Ling Bai, Meng Fan, Ke Wang. Existence of Positive Periodic Solution for Difference Equations of Three Species Ratio-Dependent Predator-Prey System, Soochow Journal of Mathematics, 2003:29(3):259-274.

[65] Zhao Chang-Jian; Debnath, L.; Wang Ke,Positive periodic solutions of a delayed model in population,Applied Mathematics Letters Volume: 16, Issue: 4, May, 2003, pp. 561-565。Impact Factor: 0.948

[66] Lin Bai, Ke Wang, Optimal Impulsive Harvest Policy for Time Dependent Logistic Equations with Periodic Coefficients, Electronic Journal of Differential Equations, 2003, No. 121, 1-9.

[67] Ke Wang, Meng Fan, Ravi P. Agawal, S. Dontna, Basic theory of functional equations with infinite delay, Functional differential equations, Vol. 11, 2004, No. 1-2, 203-220.

[68] 鲁红英,王克,自治单种群模型及其最优捕获策略,系统科学与数学,24(2),(2004,4),200-205。

[69] Jing Wang and Ke Wang,Optimal control of harvesting for single population, Applied Mathematics and Computation,Volume 156, Issue 1, 2004,235-247。(SCI检索)

[70] Zhan Li, Zhisheng Shuai, Ke Wang; Persistence and extinction of single population in a polluted environment, Electron. J. Diff. Eqns., Vol. 2004(2004), No. 108, pp. 1-5.

[71] Wang Ke, Fan Meng, Necessary and sufficient condition for the uniqueness of solutions of scalar autonomous ODEs, Nonlinear Analysis 59 (2004), 917-929.

[72] Wang Jing, Wang Ke, The optimal harvesting problems of a stage-structured population, Applied Mathematics and Computation, 148, 2004, 235-247. Impact Factor: 0.961

[73] Bai, Ling; Wang, Ke,Gilpin model with spatial diffusion and its optimal harvesting policy,Applied Mathematics and Computation Volume: 171, Issue: 1, December 1, 2005, pp. 531-546 Impact Factor: 0.961

[74] 鲁红英,王克, 具周期系数的单种群模型及其最优捕获策略,数学物理学报,2005/06。

[75] 迪申加卜,王克,具无限时滞中立型泛函微分方程解的稳定性与有界性,数学物理学报,2005/05。

[76] 柏灵,王克,Infinite Dimensional Compound Operator Equation in Hilbert Space,Northeastern Mathematical Journal,2005/01。

[77] Wei, Fengying; Wang, Ke,Uniform persistence of asymptotically periodic multispecies competition predator-prey systems with Holling III type functional response,Applied Mathematics and Computation Volume: 170, Issue: 2, November 15, 2005, pp. 994-998。Impact Factor: 0.961 (SCI检索)

[78] Fan M, Wang K, Agarwal RP, Periodic solutions of neutral functional differential equations with infinite delay , DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS 卷: 12 期: 1 页: 129-137 , FEB 2005. (SCI检索)

[79] Ling Bai, Wang, Ke,A diffusive stage-structured model in a polluted environment, Nonlinear Analysis: Real World Applications. 2006, 7(1), 96-108. (SCI 收录, EI 收录, Impact Factor: 1.778 )

[80] Jiwei He, Ke Wang, Threshold for asymptotic autonomous Gallopin’s system in a polluted environment, Soochow Journal of Mathematics, Vol. 32, No. 1, pp. 1-20, 2006.

[81] Fengying Wei, Ke Wang, Asymptotically periodic solution of N-species cooperation system with time delay, Nonlinear Analysis: Real World Applications. 2006, 7(4), 591-596. (SCI 收录, EI 收录, Impact Factor: 1.778 )

[82] Fengying Wei, Ke Wang, Global Stability and asymptotically periodic solution for nonautonomous cooperative Lotka-Volterra diffusion system, Applied Mathematics and Computation. 2006, 182, 161-165. (SCI 收录, EI 收录, Impact Factor: 0.961 )

[83] Fengying Wei and Ke Wang,Positive periodic solutions of an n-species ecological system with infinite delay,Journal of Computational and Applied Mathematics, Volume 208, Issue 2, 15 November 2007, Pages 362-372。Impact Factor: 1.048

[84] Haiyin Gao, Ke Wang, Fengying Wei and Xiaohua Ding,Massera-Type theorem and asymptotically periodic Logistic equations. Nonlinear Analysis: Real World Applications. 2006, 7(5), 1268-1283. (SCI 收录, EI 收录, Impact Factor: 1.778)

[85] Xiaoying Zhang, Xiaoyue Li, Daqing Jiang, Ke Wang. ,Multiplicity positive solutions to periodic problems for first-order impulsive differential equations. Computers & Mathematics with Applications. 2006, 52(6-7), 953-966. (SCI 收录, EI 收录, Impact Factor: 1.192 )

[86] Xiaoying Zhang, Daqing Jiang, Xiaoyue Li, Ke Wang. A new existence theory for single and multiple positive periodic solutions to Volterra integro-differential equations with impulse effects. Computers & Mathematics with Applications. 2006, 51(1), 17-32. (SCI 收录, EI 收录, Impact Factor: 1.192 )


[87] 何继伟,王克,污染环境中的Leslie系统,系统科学与数学,26(1),2006(2),31-41。

[88] Ke Wang, Meng Fan , Li Y M. Periodic wave wolutions for quasi-linear partial differential equations of first order, Rocky Mountain J Math, 2006, 36(5), 1715-1727. (SCI 收录, Impact Factor: 0.267 )


[89] Wei Fengying, Wang Ke, Persistence of non-autonomous competitive system with infinite delay, J. of nature science of Heilongjiang university, 2006, 23(6): 810-813.

[90] Fengying Wei, Ke Wang,Permanence of variable coefficients predator-prey system with stage structure,Applied Mathematics and Computation,2006,180(2), 594-598. (SCI源期刊, EI 收录, Impact Factor: 0.961 )

[91] Hongguang Zhu, Ke Wang and Xiaojian Li, Existence and global stability of positive periodic solutions for predator–prey system with infinite delay and diffusion,Nonlinear Analysis: Real World Applications. 2007, 8(3), 872-886. (SCI 收录, Impact Factor: 1.778)

[92] Fengying Wei, Ke Wang,Persistence of some stage structured ecosystems with finite and infinite delay,Applied Mathematics and Computation. 2007, 189(1), 902-909. (SCI 收录, EI 收录, Impact Factor: 0.961)

[93] Zhisheng Shuai, Ling Bai and Ke Wang,Optimization problems for general simple population with n-impulsive harvest,Journal of Mathematical Analysis and Applications. 2007, 329(1), 634-646. (SCI 收录, Impact Factor: 1.046 )

[94] Ling Bai , Ke Wang,A diffusive single-species model with periodic coefficients and its optimal harvesting policy,Applied Mathematics and Computation. 2007, 187(2), 873-882. (SCI 收录, Impact Factor: 0.961 )

[95] Fengying Wei, Ke Wang, Positive periodic solutions of an n-species ecological system with infinite delay,Journal of Computational and Applied Mathematics. 2007, 208(2), 362-372. (SCI 收录, EI 收录, Impact Factor: 1.292 )

[96] Fengying Wei, Ke Wang, The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay,Journal of Mathematical Analysis and Applications. 2007, 331, 516-531. (SCI 收录, Impact Factor: 1.046 )

[97] Jiwei He, Ke Wang, The survival analysis for a single-species population model in a polluted environment. Applied Mathematical Modelling. 2007, 31(10), 2227-2238. (SCI 收录, EI 收录, Impact Factor: 1.375 )

[98] Xiaojian Li, Ke Wang, The survival analysis of a non-autonomous n-dimensional Volterra mutualistic system in a polluted environment, Acta Mathematicae Applicatae Sinica-English series, 2007, 23(1), 133-140. (SCI 收录, Impact Factor: 0.961 )

[99] Jiwei He, Ke Wang, The survival analysis for a population in a polluted environment, Nonlinear Analysis: Real World Applications. 2009, 10, 1555-1571. (SCI 收录, EI 收录, Impact Factor: 1.778 )

[100] Meng Liu, Ke Wang, Survival analysis of stochastic single-species population models in polluted environments, Ecological Modelling. 2009, 220, 1347-1357. (SCI 收录, EI 收录, Impact Factor: 2.176 )

[101] Dejun Fan, Ke Wang, Ling Hong. The complete parameters analysis of the asymptotic behaviour of a Logistic epidemic model with two stochastic perturbations, Mathematical Problems in Engineering .Volume 2009. (SCI 收录, EI 收录, Impact Factor: 0.376 )

[102] Wei Fengying,Wang Ke,Some Properties of Higher Dimensional Asymptotically Periodic Functions,Far East Journal of Mathematical Sciences,2009,35(3):317-328.

[103] Guangyu Li, Ke Wang,A 1-Dimensional Nonlinear Filtering Problem, Acta Mathematica Sinica, English Series. 2010, 26(3), 555-560. (SCI 收录, Impact Factor: 0.543 )

[104] 鲁红英,王克,一类自治单种群及其最优捕获策略,系统科学与数学,30(1) (2010, 1), 33–42。影响因子:0.207

[105] Wenxue Li, Ke Wang, Optimal harvesting policy for general stochastic Logistic population model, Journal of Mathematical Analysis and Applications. 2010, 368, 420-428. (SCI 收录, Impact Factor: 1.046 )

[106] Guangyu Li and Ke Wang, An analysis of self-stabilization of stochastic neural networks, Advances in Systems Science and Applications. 2010, 10(1), 25-33. (SCI, Impact Factor: 0.543 )

[107] Fengying Wei, Ke Wang, The periodic solution of functional differential equations with infinite delay, Nonlinear Analysis: Real World Applications. 2010, 11, 2669-2674. (SCI 收录, EI 收录, Impact Factor: 2.381 )

[108] Meng Liu, Ke Wang, Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment, Journal of Theoretical Biology. 2010, 264, 934-944. (SCI 收录, Impact Factor: 2.454 )

[109] Meng Liu, Ke Wang, Extinction and permanence in a stochastic non-autonomous population system, Applied Mathematics Letters. 2010, 23(12), 1464-1467. (SCI 收录, EI 收录, Impact Factor: 0.978 )

[110] Guixin Hu, Ke Wang, Stability in Distribution of Competitive Lotka-Volterra System with Markovian Switching, Applied Mathematical Modelling. (2010), doi: 10.1016/ j.apm.2010. 12.025. (SCI 源期刊, EI 收录, Impact Factor: 1.375 )

[111] Meng Liu, Ke Wang, Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment II, Journal of Theoretical Biology. 2010, 267(3), 283-291. (SCI 收录, Impact Factor: 2.454 )

[112] Meng Liu, Ke Wang, Global stability of stage-structured predator-prey models with Beddington- DeAngelis functional response, Communications in Nonlinear Science and Numerical Simulation. In Press, Accepted Manuscript, Available online 28 December 2010. (SCI 源期刊)

[113] Meng Liu, Ke Wang, Qiong.Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bulletin of Mathematical Biology. (2010), 10.1007/s 11538-010-9569-5. (SCI 源期刊, Impact Factor: 1.873 )

[114] Xiaoling Zou, Ke Wang, The protection zone of biological population, Nonlinear Analysis: Real World Applications. 2011, 12, 956-964. (SCI 收录, EI 收录, Impact Factor: 2.381 )

[115] Meng Liu, Ke Wang, Global stability of a nonlinear stochastic predator–prey system with Beddington-DeAngelis functional response, Communications in Nonlinear Science and Numerical Simulation. 2011, 16(3), 1114-1121. (SCI 收录)

[116] Wenxue Li, Huan Su, Ke Wang, Global stability analysis for stochastic coupled systems on networks, Automatica. 2011, 47, 215-220. (SCI 源期刊, EI 收录, Impact Factor: 2.631 )

[117] Liu Meng, Wang Ke, Persistence and extinction in stochastic non-autonomous logistic systems, Journal of Mathematical Analysis and Applications. 2011, 375, 443-457. (SCI 收录, Impact Factor: 1.046 )

[118] Jingliang Lv, Ke Wang, Asymptotic properties of a stochastic predator-prey system with Holling II functional response, Communications in Nonlinear Science and Numerical Simulation. 2011, Volume 16, Issue 10, October 2011, Pages 4037-4048 (SCI 源期刊)

[119] Meng Liu, Ke Wang, Xianwei Liu , Long term behaviors of stochastic single-species growth models in a polluted environment, Applied Mathematical Modelling. 2011, 35(2), 752-762. (SCI 收录, EI 收录, Impact Factor: 1.375 )

[120] M. Liu, K. Wang, Y. Wang, Long term behaviors of stochastic single-species growth models in a polluted environment II, Appl. Math. Modelling (2011), Volume 35, Issue 2, February 2011, Pages 752-762, Impact Factor: 1.375

[121] Huan Su, Wenxue Li, Ke Wang, XiaohuaDing, Stability analysis for stochastic neural network with infinite delay, Neurocomputing, Impact Factor: 1.440.

[122] Guixin Hu, Ke Wang, Stability in distribution of competitive Lotka–Volterra system with Markovian switching, Applied Mathematical Modelling, Volume 35, Issue 7, July 2011, Pages 3189-3200. Factor: 1.375

[123] Jingliang Lv, Ke Wang, Optimal Harvest of a Stochastic Predator-Prey Model, Advances in Difference Equations,Volume 2011 (2011). 影响因子:0.88

[124] Meng Liu, Ke Wang, Asymptotic properties and simulations of a stochastic logistic model under regime switching , Mathematical and Computer Modelling, In Press, Accepted Manuscript, Available online 18 May 2011. Impact factor: 1.103

[125] Jingliang Lv and Ke Wang, Analysis on a Stochastic Predator-Prey Model withModified Leslie-Gower Response . Abstract and Applied Analysis, Volume 2011, Article ID 518719, 16 pages doi:10.1155/2011/518719. Impact Factor 2.221

[126] Xiaoling Zou, Ke Wang , A robustness analysis of harvesting models with protection zone, Applied Mathematical Modelling, In Press, Accepted Manuscript, Available online 17 May 2011
Factor: 1.375

[127] Jingliang Lv, Ke Wang and Meng Liu, Dynamical properties of a stochastic two-species Schoener's competitive model, International Journal of Biomathematics,
DOI No: 10.1142/S1793524511001751 .影响因子:0.616


[128] Wenxue Li, Ke Wang, Huan Su Optimal harvesting policy for stochastic Logistic population model , Applied Mathematics and Computation, Volume 218, Issue 1, 1 September 2011, Pages 157-162. Impact Factor: 1.124

[129] Guixin Hu, Ke Wang, The estimation of probability distribution of SDE by only one sample trajectory, Computers & Mathematics with Applications, In Press, Corrected Proof, Available online 2 July 2011 , Impact Factor: 1.472

[130] Guixin Hu, Ke Wang, Stability in distribution of neutral stochastic functional differential equations with Markovian switching Journal of Mathematical Analysis and Applications, In Press, Accepted Manuscript, Available online 8 July 2011. 影响因子:1.046

[131] Li Guangyu , Wei Fengying and Wang Ke , Some Results for Self-Stabilization of Stochastic Differential Equation, Advances in Systems Science and Applications (2011), Vol.11, No.3, 273-280

[132] Guixin Hu, Ke Wang. Existence and Uniqueness Theorem for Stochastic Differential Equations with Self-exciting Switching. Discrete Dynamics in Nature and Society,Volume 2011, Article ID 549651,doi:10.1155 / 2011 / 549651,(SCI). Impact Factor: 0.967

[133] M.Liu, K.Wang, Survival analysis of a stochastic cooperation system in a polluted environment, J. Biol. Syst. 19 (2011) 183-204. (SCI, Impact Factor: 0.458)

[134] M.Liu, K.Wang, Persistence and extinction of a stochastic single-species population model in a polluted environment with impulsive toxicant input, Inter. J. Biomath. (2011), doi: 10.1142/S1793524511001830. (SCI, Impact Factor: 1.667)

[135] 郭英, 李文学, 王克, 随机Volterra积分方程相容解的稳定性, 应用数学学报, Vol. 34, No.2, 2011, 332-340.

[136] Lisha Pang, Ke Wang, Function series theory of time scales, Computers and Mathematics with Applications. Vol. 62, Issue 9, November 2011, Pages 3427-3437. Impact Factor: 1.472.

[137] Guixin Hu,Ke Wang. On Stochastic Logistic Equation with Markovian Switching and White Noise. Osaka Journal of Mathematics, 2011,48,4 (SCI). Impact Factor: 0.356

[138] Guixin Hu, Meng Liu , Ke Wang, The asymptotic behaviours of an epidemic model with two correlated stochastic perturbations, Applied Mathematics and Computation 218 (2012) 10520–10532. Factor: 1.338

[139] Meng Liu, Ke Wang , Asymptotic properties and simulations of a stochastic logistic model under regime switching II , Mathematical and Computer Modelling 55(3-4): 405-418 (2012) Impact factor: 1.103

[140] Guixin Hu, Ke Wang, Stability in distribution of neutral stochastic functional differential equations with Markovian witching, Journal of Mathematical Analysis and Applications, 385 (2012) 757–769 Impact Factor:1.046

[141] Meng Liu, Ke Wang, On a stochastic logistic equation with impulsive perturbations, Computers and Mathematics with Applications, Volume 63, Issue 5, March 2012, 871-886.

[142] Meng Liu, Ke Wang, Persistence, extinction and global asymptotical stability of a no-autonomous predator-prey model with random perturbation, Applied Mathematical Modeling, Volume 36, Issue 11, November 2012, Pages 5344-5353, Factor: 1.375


[143] Meng Liu, Ke Wang, Asymptotic properties and simulations of a stochastic logistic model under regime switching, Communications in Nonlinear Science and Numerical Simulation, Available online 5 January 2012. Impact Factor: 2.697

[144] Wenxue Li, Meng Liu, and Ke Wang,A Generalization of Ito’s Formula and the Stability of Stochastic Volterra Integral Equations,Journal of Applied Mathematics,Volume 2012, Article ID 292740, doi:10.1155/2012/292740. Impact Factor: 0.656

[145] Meng Liu, Qiong Wu, Ke Wang, Analysis of an improved epidemic model with stochastic disease transmission, Applied Mathematics and Computation, Volume 218, Issue 19, 1 June 2012, Pages 9750-9758. Impact Factor: 1.338

[146] Meng Liu, Wenxue Li, Ke Wang, Persistence and extinction of a stochastic delay Logistic equation under regime switching, Applied Mathematics Letters, In Press, Corrected Proof, Available online 27 April 2012. Impact Factor: 1.238

[147] Meng Liu, Ke Wang, Global asymptotic stability of a stochastic Lotka–Volterra model with infinite delays, Communications in Nonlinear Science and Numerical Simulation, Volume 17, Issue 8, August 2012, Pages 3115-3123. Impact Factor: 2.697

[148] Meng Liu, Ke Wang, Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1980-1985 . Impact Factor: 1.238

[149] W. Li, H. Su, D. Wei, and K. Wang, Global stability of coupled nonlinear systems with Markovian switching, Communications in Nonlinear Science and Numerical Simulation, vol. 17, pp.2609–2616, 2012. Impact Factor: 2.697

[150] Wenxue Li, Lisha Pang, Huan Su, Ke Wang, Global stability for discrete Cohen–Grossberg neural networks with finite and infinite delays, Applied Mathematics Letters, Volume 25, Issue 12, December 2012, Pages 2246-2251, Impact Factor: 1.238

[151] Huan Su, Wenxue Li, and Ke Wang, Global stability analysis of discrete-time coupled systems on networks and its applications, Citation: Chaos 22, 033135 (2012); doi: 10.1063/1.4748851, IMPACT FACTOR: 2.076.

[152] M.Liu, K.Wang. Persistence and extinction of a single-species population system in a polluted environment with random perturbations and impulsive toxicant input. Chaos Solitons Fractals (2012), doi: 10.1016/j.chaos.2012.08.011. Impact Factor:1.222

[153] M.Liu, K.Wang. Asymptotic behavior of stochastic nonautonomous Lotka-Volterra competitive system with impulsive perturbations. Math. Comput. Modelling (2012), doi: 10.1016/j.mcm.2012.09.019.

[154] M.Liu, K.Wang. Global stability of a stochastic logistic model with distributed delay, Math. Comput. Modelling (2012), doi: 10.1016/j.mcm.2012.10.006.

[155] H.Qiu, M.Liu, K.Wang, Dynamics of a stochastic predator-prey system with Beddington--DAngelis functional response, Appl. Math. Comput. 219 (2012) 2303-2312.

[156] C. Zhang, W. Li, K. Wang, Boundedness for network of stochastic coupled van der Poloscillators with time-varying delayed coupling, Appl. Math. Modelling (2012), doi: http://dx.doi.org/10.1016/j.apm 2012.10.032 , Factor: 1.375


[157] M.Liu, H.Qiu, K.Wang. A remark on stochastic predator-prey system with time delays. Appl. Math. Lett. 26 (2013), doi: 10.1016/j.aml.2012.08.015. Impact Factor: 1.238

[158] Xiaoling Zoua, Wenxue Li , Ke Wang, Ergodic method on optimal harvesting for a stochastic Gompertz-type diffusion process, Applied Mathematics Letters 26 (2013) 170–174. Impact Factor: 1.238

文章发布员:范德军
版权所有:哈尔滨工业大学(威海)理学院 电话:
CopyRight © 2011- All rights reserved Email:
技术支持:网络中心 [管理登陆]