摘要:In this talk, we take Rosenzweig-MacArthur (RM) equation with generalist predator as an example in a constant or changing environment. When the environment is fixed, we provide a more easily verifiable classification to determine the types and codimension of nilpotent singularities in a general planar system. Second, by using some algebraic methods, we show that the highest codimension of a nilpotent focus is 4 and the sample RM equation with generalist predator can exhibit nilpotent focus bifurcation of codimension 4. When the environment is changing, we study the impact of the rate and intensity of a nonlinear environmental change on dynamics. It is based on a joint work with Min Lu and Professor Hao Wang.
报告时间:2023年5月10日(周三)上午9:00-10:30
报告地点:线上,腾讯会议号:923572069
报告人简介:
黄继才,华中师范大学教授,博士生导师。主要从事常微分方程定性理论、分支理论及其应用,几何奇异摄动理论及其应用,非光滑方程及其应用研究。在 JDE、JDDE、SIAP、SIADS、JMB、SAPM、BMB 等期刊发表学术论文五十余篇。其中发表在 SIADS (2019) 的文章被美国工业与应用数学学会在《SIAM News》专文报道,并被选为该刊Featured Article。主持国家自然科学基金4项,参与国家自然科学基金重点项目1项,曾获湖北省自然科学奖三等奖。