报告摘要:In this talk, of concern is the global dynamics of a two species Holling-II amensalism system with nonlinear growth rate. The existence and stability of trivial equilibrium, semi-trivial equilibria, interior equilibria and infinite singularity are studied. Under different parameters, there exist two stable equilibria which means that this model is not always globally asymptotically stable. Together with the existence of all possible equilibria and their stability, saddle connection and close orbits, we derive some conditions for transcritical bifurcation and saddle-node bifurcation. Furthermore, global dynamics of the model is performed.
报告时间:2023年5月22日(周一)上午 9:00-10:30
报告地点:线上,腾讯会议号:660640607
报告人简介:
王其如,中山大学数学学院教授、博士研究生导师,中国工业与应用数学学会理事、数学与国防创新委员会委员,广东省和广州工业与应用数学学会理事长、党支部书记。从事微分方程与动力系统、数学建模等方面的研究及应用,主持完成国家自然科学基金面上项目4项、在研1项,在国内外学术期刊J. Differential Equations、Nonlinear Anal. Real World Appl.、Discrete Contin. Dyn. Syst.、Fract. Calc. Appl. Anal.、中国科学数学(中、英文版)等发表相关学术论文130 余篇。是德国《数学文摘》和美国《数学评论》的评论员等。